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Abstract 
In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg 
grating for the purpose of detecting action potentials in axons optically, through a change in 
index of refraction, rather than electrically.  The potential application of this technology, long 
term, is a multi-channel interface to the peripheral nervous system in prosthetic devices.  In that 
prior work, optical signals corresponding to electrically measured action potentials were seen 
inconsistently because of poor physical contact between the nerve and the optical fiber surface.  
The main goal of this STIR was to develop a method to improve the nerve/fiber contact, and then 
to confirm the optical detection approach.  A number of mechanical methods for fixing the axon 
to the fiber were tested, but the buoyancy of the nerve in the electrolyte, as well as its delicacy, 
were problematic.  These challenges have not yet been overcome, but numerous approaches have 
been ruled out in this research as impractical.  The key to future success will be keeping the 
nerve taut and preventing it from moving. 
 
1 Introduction 
As discussed in the proposal, the optical signals that were obtained in our prior research were not 
reproducible.  One of the main reasons was that the nerves floated in the crayfish saline solution 
in which they should remain immersed, and thus did not make good, stable contact with the 
optical fiber.  The peaks in the optical signal associated with action potentials that were obtained 
previously were taken in air in order to exploit surface tension to hold the nerve onto the fiber.  
However, this resulted in rapid degradation of the signal.  The other issue was that the claw 
nerve that we used contains a number of axons, and it was not clear whether the electrical and 
optical signals were coming from the same one. 
 
With this STIR funding, we have taken a step further with this work, exploring, and ultimately 
rejecting, a number of ways to improve the nerve/fiber contact.  Unfortunately, we were unable 
to hire a dedicated biology post-doc to work for only 6 months, so the work was done by Dr. 
Smela and a graduate student in her group. 
 
2 Original Set-Up 
The aim of the experiments was to show that action potentials could be detected optically.  To 
verify this, electrical and optical signals must be recorded simultaneously.  This is a challenge 
for a number of practical reasons.  First, the optical fiber with the long period Bragg grating 
(LPG) is very delicate because the plastic jacket has been stripped from the fiber in order to write 
the grating.  The stripped region cannot be bent at sharp angles or otherwise stressed, or the fiber 
breaks.  In our previous work, a fiber-holder had been constructed to support the fiber and hold it 
taut (Figure 1).  Second, the nerve needs to span two pairs of electrodes for the electrical 
measurements.  The electrodes need to run perpendicular to the optical fiber, and they must be 
electrochemically stable upon repeated application of voltages in saline solution.  The electrode 
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wires were therefore placed over the optical fiber and glued onto the fiber holder substrate.  
Lastly, the nerve needs to be placed over both pairs of electrodes and in stable contact along the 
length of the LPG, and immersed in crayfish saline solution.  Thus, the fiber holder had a well to 
contain the electrolyte. 
 

optical
fiber

electrodes

well

 
Figure 1.  Previously used holder for the optical fiber and the electrode wires. 
 
3 New Nerve Preparation 
Prior work had utilized the claw nerve and the abdominal nerve (the nerve in the tail); the latter 
was more difficult to explant without damage.  An alternative method of preparing the 
abdominal nerve explant was learned from Prof. Jens Heberholtz in the Biology department at 
the University of Maryland  The abdominal nerve is attractive for this research because it has 
two large axons, the medial giant (MG) and lateral giant (LG), along both sides, near the top 
(Figure 2).  The lateral giants can be stimulated individually, since they are the largest and 
therefore fire at the lowest applied voltage:  by starting at a low voltage and increasing it 
gradually, the first signal to be seen electrically comes from these.  The other axons don’t begin 
to fire until higher voltages are applied, which can also be observed on an oscilloscope.  The 
abdominal nerve thus allows relatively straightforward manipulation due to its large size 
combined with only single axon firing.   
 
The abdominal nerve lies just below the soft shell on the ventral side of the abdomen (the “belly” 
side of the crayfish tail).  The preparation involves cutting the shell along the sides and the back 
of the tail, removing it, and then picking out all the muscle above the nerve with tweezers.  This 
process takes at least 30 minutes, which is a drawback since the axon degrades in the meantime.   
 
Once the muscle has been removed, the nerve is exposed on all sides and can be stimulated 
electrically while still in the shell.  Electrical stimulation is performed with one pair of 
electrodes, and detection is done with a second pair some distance away.  The electrodes consist 
of a pair of fine Teflon-coated Ag wires fixed inside a glass capillary.  Micromanipulators into 
which the capillaries are clamped allow the wires to be positioned in x, y, and z.   
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Figure 2.  Cross section of the crayfish abdominal nerve from B. Mulloney and W. Hall, UC Davis,  
http://www.science.smith.edu/departments/NeuroSci/courses/bio330/labs/LAanatomy/transverse.html.  The 
medial and lateral giant axons are labeled.  Two roots (see Figure 3) can be seen on either side. 
 
Because of their immersion in saline solution, the receiving electrode pair picks up an electrical 
signal traveling through the solution, called the artifact.  This has the same shape as an action 
potential, and a comparable time of arrival.  To tell it apart from a spike traveling through the 
nerve, one needs to adjust the voltage:  the artifact changes size commensurately, but the action 
potential does not.  To separate the two signals in time, the electrodes should be as far apart as 
possible.   
 
A drawback to this approach of contacting the nerve is that the wires, while only 0.005” = 125 
μm in diameter, are nevertheless significant in size compared to the nerve, which is several 
hundred μm in diameter, and the wires are much stiffer.  Without close mechanical contact, the 
electrical contact is poor, but pressing on the nerve with the wires can cause damage. 
 
The supplies and manipulators necessary for this work were purchased for our laboratory.  The 
electrodes were fabricated, and the techniques were practiced so that we could reproduce this 
preparation.  The most important of these supplies were tweezers with a special grip for holding 
onto slippery biological tissue to be used during the dissection. 
 
4 Approach 1:  Pin Axon Down over Fiber 

Since the fiber holder used previously did not allow for a means of fastening down the axon, and 
protein coatings such as polylysine to improve adhesion had proven ineffective, the research 
focused on mechanically fastening the nerve in place.  After removing the abdominal nerve, 
either using the new back-of-the-shell preparation or a faster and more direct approach of 
removing the soft shell from the ventral part of the abdomen, the nerve was pinned to a 
polydimethylsiloxane (PDMS) base inside a Petri dish.  This required that the nerve be removed 
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in such a manner that the ganglia branching off of it (Figure 3) be kept as long as possible.  Pins 
placed into the nerve itself damage the axons, so the pins were placed into the ganglia instead. 
 

  
Figure 3.  Crayfish tail viewed from the top (back) side and the abdominal nerve chord that runs along the 
tail section.  Image taken from 
http://www.science.smith.edu/departments/NeuroSci/courses/bio330/labs/L7cns.html. 
 
For the work described here, “dummy” optical fibers were used, which were glass optical fibers 
with the protective plastic jackets stripped off of a 2-3” section to mimic the LPG fibers.  This 
renders the fibers brittle, and care must be taken in handling them. 
 
Given the long preparation time, many of the experiments were conducted by, after decapitation, 
removing the soft shell on the ventral side of the abdomen, which exposes the nerve directly.  
This was done by peeling the shell back gradually and cutting the dorsal roots that are attached to 
the shell, trying to keep them as long as possible. 
 
4.1 Tying the Nerve to the Fiber 

Prof. Heberholtz  had suggesting tying off the two ends of the nerve to keep it active longer.  
Using a hook tool and fine thread, this was done with the nerve still in the shell.  The dummy 
optical fiber was laid alongside the nerve, and on one end, using the same thread, the nerve was 
then tied to the fiber.  On the other end, the nerve was ligated and tied to the fiber with a single 
loop.  Unfortunately, the nerve could not be kept taut since the thread slipped readily on the 
optical fiber:  the nerve therefore “sagged” in the center and did not contact the area where the 
grating would be (Figure 4). 
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Figure 4.  Tying the nerve to the fiber is unsuccessful because the thread slides along the optical fiber, so the 
nerve cannot be held straight against it. 
 
Using the Ag electrodes and the x-y-z positioners, electrical contact was made to the nerve, and 
stimulation at 9 V caused the connected muscles to twitch.  Action potentials were recorded with 
the second electrode pair, but not consistently.  One issue with the Ag wires is oxidation at these 
voltages:  the Teflon coating is stripped from the ends of the wires, and the exposed parts turn 
black.  Another issue is that the electrode pair develops a capacitance in a rather short time, most 
probably from salt accumulating in the glue plug at the end of the capillary that holds the wires 
in place.  Thus, fresh electrodes should be prepared prior to each experiment. 
 
4.2 Fixing the Optical Fiber 

Based on these results, it was decided that the nerve should be pinned down over the optical 
fiber.  PDMS is commonly used as a base for pinning during dissections.  PDMS is an 
elastomeric, biocompatible, transparent polymer that is formed by mixing two precursor 
solutions together and curing.   
 
First, the optical fiber needed to be fixed in place on the PDMS.  A narrow groove was cut into a 
PDMS-filled petri dish into which the optical fiber could be fixed.  However, this required that 
the optical fiber make a rather sharp turn at the edges of the dish (Figure 5), which put a stress on 
the fairly stiff fiber, causing it to pop out of the groove; it cannot be pushed too deeply down, or 
the grating would not be exposed.  This stress can also cause the fiber to break.  Finally, this 
mounting method imparted a curvature to the grating part of the fiber, which should be keep 
straight. 

 
Figure 5.  Optical fiber fixed into a Petri dish by embedding in PDMS. 
 
Another method of fixing the optical fiber in place was tested that involved laying the optical 
fiber flat over a slab of PDMS, constructing concentric ring-shaped walls, and filling the gap 
with uncured PDMS solution to harden in place, but the mixture is too fluid, and it leaked out 
and covered the fiber.   
 
The PDMS was therefore replaced by Loctite 3108, a UV-curable elastomer.  The uncured 
precursor is less fluid, having a consistency similar to that of toothpaste so that it can hold its 
shape.  The precursor was filled to the top of a petri dish, covered with plastic wrap, and cured 
under a UV lamp.  The heat generated caused the plastic wrap to wrinkle, so that the surface of 
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the Loctite was not perfectly smooth.  The fiber was laid parallel to a shallow wrinkle.  Both 
ends were covered with a knob of additional Loctite, and this was cured.  This configuration held 
the optical fiber firmly in place without stress.  The polymer and fiber were rinsed with acetone 
and then soaked for several days in several changes of deionized water to remove any water-
soluble monomers that might be toxic to the nerve. 
 
4.3 Pinning the Nerve over the Optical Fiber 

A nerve was cut out of the shell and placed into the Loctite surface, which was fixed to the 
bottom of a larger petri dish filled with crayfish saline.  The nerve was then fixed over the fiber 
by pinning the roots.  This pinning process took considerable time because of the buoyancy of 
the nerve and its delicate, jelly-like consistency, which is easily damaged by pins and tweezers.  
Unfortunately, once pinned, the nerve still floated in the solution, without making good contact 
with the optical fiber (Figure 6).  Furthermore, when the Ag wires were brought into contact with 
the nerve, they pushed it off of the fiber. 
 

 
Figure 6.  Overhead and side views of a nerve pinned down over an optical fiber fixed to an elastomeric 
substrate.   
 
Another Loctite substrate was prepared having a ridge under the optical fiber with the hope that 
the roots could be pulled downward upon pinning.  This configuration was some improvement.  
Another issue that must be considered is that once explanted, the nerve coils and tangles, and it 
becomes difficult to keep straight and at the proper rotation. 
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5 Approach 2:  Leave Axon in Shell 

5.1 Front-Side Approach 

In order to keep the nerve taut and at the right rotation, the next approach involved leaving it in 
the shell and bringing the fiber alongside it.  The shell was removed from the ventral side of the 
abdomen.  The activity of the nerve was verified by electrical stimulation, which produced 
muscle twitches.  A dummy fiber was then manipulated to try to bring it into contact with the 
nerve.  The following issues arose.  First, the clear, colorless fiber became virtually invisible, and 
it was particularly difficult to discern the region from which the jacket was stripped, where the 
LPG would have been.  Second, the nerve is still not held in place tautly enough, and moves 
when touched by the fiber because the front-side preparation involves cutting some of the roots 
(the ones that are attached to the soft shell).  Third, the dish holding the saline needs to be more 
shallow in order to avoid too large a curvature on the fiber.  Fourth, it is difficult to maneuver the 
fiber into position, and to do so without breaking it. 
 
5.2 Back-Side Approach 

This technique was thus attempted using the  Heberholtz preparation and a dish with lower 
sidewalls.  The thorax was left on so that the nerve would not be severed, with the hope that this 
would hold it in a more fixed position.  However, to remove the muscle tissue, some of the roots 
had to be severed.  On the plus side, electrode contact was straightforward, and the nerve 
remained active, as indicated by muscle movement.  The thorax and tail fan were, unfortunately, 
too high above the nerve, which was at the bottom of the shell, to be able to bring the optical 
fiber into position.  The nerve ends were therefore ligated and the thorax and tail fan removed.  
This left the nerve rather loose, being connected only to the soft shell.  The ligating thread was 
therefore pinned down to the PDMS at the bottom of the dish.  The edges of the part of the fiber 
with the jacket stripped off were marked in black permanent ink, so they could be easily seen.  It 
once again proved difficult to maneuver the optical fiber, and additional manipulators would be 
needed to make this work.  Given the space constraints, it would not be straightforward to fit 
everything closely enough.   
 
At the end of this experiment, the nerve was cut from the shell to try to attach it to the optical 
fiber using surface tension, as had been done previously.  The nerve immediately attached itself 
along the thread, however, where it stuck permanently.  It is not clear whether this is due to the 
roughness of the thread, or to its composition. 
 
5.3 Cutting open the Nerve 

The nerve is covered with a tough sheath.  It is an attractive idea to cut the nerve open so that 
direct contact could be made between the surface of the optical fiber and the large axons.  
Previously, we have tried to dissolve the sheath, for example using protease, or to combine 
protease digestion of the sheath with mechanical removal.  This does not produce a satisfactory 
result, just damaging the nerve.  An ultra-fine, ultra-sharp dissection tool was purchased with the 
plan of bisecting the nerve.  However, the sheath is too tough to be cleanly cut; rather, it tears. 
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6 Summary of Lessons Learned 

The buoyancy of the nerve and its delicacy pose problems in bringing the nerve parallel to, and 
in direct physical contact with, the optical fiber.  These challenges have not yet been overcome, 
but numerous approaches have been ruled out in this research as impractical.  The key to success 
will be keeping the nerve taut and preventing it from moving. 
 
If Ag wires mounted in capillaries are used with micromanipulators to make contact with the 
nerve, fresh electrodes must be prepared for that day’s work, and care must be taken not to 
damage the nerve with too much pressure. 
 
7 Future Work 

Future experiments in the short term will focus on the use of surgical glue, which is 
biocompatible and can be used in water.  This is based on the successful use of the photo-curable 
glue to fix the optical fiber, which was quite effective and held it in place so that it could not 
readily be broken.  The part of the fiber outside the glued areas was covered by the jacket, and 
could therefore be manipulated without breaking the fiber.  The pins allowed too much vertical 
movement of the nerve.  The plan is to glue down one side of the nerve, then use a pin to stretch 
the nerve and hold it in position while a second spot of glue is used to fix the other end in place.  
This will be tried both in a petri dish, which has the drawback that it is difficult to orient the fiber 
rotation angle vis-à-vis the optical fiber, and in the shell as described at the end of section 5.2, 
which has the drawback that it may be difficult to re-use the LPG, which is fairly expensive. 
 
In terms of electrical contacts to the nerve, there is the possibility of metalizing the fibers and 
then patterning the metal film to form flat electrodes directly on the fiber, thus avoiding the need 
to introduce wires that are almost as large as the nerve itself.  This patterning would be possible 
using a maskless lithography system from Intelligent Micropatterning that the Fablab at the 
University of Maryland is considering purchasing.  This system has a z-stage that allows for 
patterning on curved surfaces.  The metal patterning would need to occur prior to writing the 
grating 
 
In the long term, once the optical sensing of action potentials is established, axons will need to 
be regenerated over the LPG by coating the fiber with nerve growth factor and other proteins.  
This requires a biologist such as Lnenicka at SUNY in Albany with expertise in the regeneration 
of axons. 
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